Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Vet Microbiol ; 261: 109210, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34416538

ABSTRACT

Herpesviruses are attractive vaccine vector candidates due to their large double stranded DNA genome and latency characteristics. Within the scope of veterinary vaccines, herpesvirus-vectored vaccines have been well studied and commercially available vectored vaccines are used to help prevent diseases in different animal species. Felid alphaherpesvirus 1 (FHV-1) has been characterised as a vector candidate to protect against a range of feline pathogens. In this review we highlight the methods used to construct FHV-1 based vaccines and their outcomes, while also proposing alternative uses for FHV-1 as a viral vector.


Subject(s)
Cat Diseases/prevention & control , Genetic Vectors/standards , Immunization/veterinary , Varicellovirus/immunology , Animals , Cat Diseases/immunology , Cat Diseases/virology , Cats , Genetic Vectors/genetics , Vaccines, Synthetic/immunology , Varicellovirus/genetics
2.
Front Immunol ; 12: 657795, 2021.
Article in English | MEDLINE | ID: mdl-33868302

ABSTRACT

Progress in recombinant AAV gene therapy product and process development has advanced our understanding of the basic biology of this critical delivery vector. The discovery of rAAV capsid post-translational modifications (PTMs) has spurred interest in the field for detailed rAAV-specific methods for vector lot characterization by mass spectrometry given the unique challenges presented by this viral macromolecular complex. Recent concerns regarding immunogenic responses to systemically administered rAAV at high doses has highlighted the need for investigators to catalog and track potentially immunogenic vector lot components including capsid PTMs and PTMs on host cell protein impurities. Here we present a simple step-by-step guide for academic rAAV laboratories and Chemistry, Manufacturing and Control (CMC) groups in industry to perform an in-house or outsourced bottom-up mass spectrometry workflow to characterize capsid PTMs and process impurities.


Subject(s)
Capsid Proteins/genetics , Dependovirus/genetics , Gene Expression Regulation, Viral , Genetic Engineering , Genetic Vectors/genetics , Protein Processing, Post-Translational , Proteomics/methods , Capsid Proteins/metabolism , Chromatography, Liquid , Dependovirus/metabolism , Genetic Vectors/isolation & purification , Genetic Vectors/standards , Glycosylation , Humans , Polysaccharides/metabolism , Tandem Mass Spectrometry
3.
Methods Mol Biol ; 2183: 367-390, 2021.
Article in English | MEDLINE | ID: mdl-32959254

ABSTRACT

The discovery of the genome-editing tool CRISPR-Cas9 is revolutionizing the world of gene therapy and will extend the gene therapy product pipeline. While applying gene therapy products, the main difficulty is an efficient and effective transfer of the nucleic acids carrying the relevant information to their target destination, the nucleus of the cells. Baculoviruses have shown to be very suitable transport vehicles for this task due to, inter alia, their ability to transduce mammalian/human cells without being pathogenic. This property allows the usage of baculovirus-transduced cells as cell therapy products, thus, combining the advantages of gene and cell therapy. To make such pharmaceuticals available for patients, a successful production and purification is necessary. In this chapter, we describe the generation of a pseudotyped baculovirus vector, followed by downstream processing using depth and tangential-flow filtration. This vector is used subsequently to transduce human mesenchymal stem cells. The production of the cells and the subsequent transduction process are illustrated.


Subject(s)
Baculoviridae/genetics , Gene Transfer Techniques , Genetic Engineering , Genetic Vectors/biosynthesis , Genetic Vectors/genetics , Mesenchymal Stem Cells/metabolism , Transduction, Genetic , Batch Cell Culture Techniques , Bioreactors , Cell Survival , Cells, Cultured , Genetic Engineering/methods , Genetic Therapy/methods , Genetic Vectors/standards , Humans , Quality Control , Workflow
4.
Methods Mol Biol ; 2286: 237-250, 2021.
Article in English | MEDLINE | ID: mdl-32504293

ABSTRACT

Recently, gene therapy as one of the most promising treatments can apply genes for incurable diseases treatment. In this context, vectors as gene delivery systems play a pivotal role in gene therapy procedure. Hereupon, viral vectors have been increasingly introduced as a hyper-efficient tools for gene therapy. Adenoviral vectors as one of the most common groups which are used in gene therapy have a high ability for humans. Indeed, they are not integrated into host genome. In other words, they can be adapted for direct transduction of recombinant proteins into targeted cells. Moreover, they have large packaging capacity and high levels of efficiency and expression. In accordance with translational pathways from the basic to the clinic, recombinant adenoviral vectors packaging must be managed under good manufacturing practice (GMP) principles before applying in clinical trials. Therein, in this chapter standard methods for manufacturing of GMP-compliant Adenoviral vectors for gene therapy have been introduced.


Subject(s)
Adenoviridae/genetics , Biomedical Technology/standards , Genetic Therapy/methods , Genetic Vectors/standards , Adenoviridae/physiology , Biomedical Technology/methods , Gene Transfer Techniques/standards , Genetic Therapy/standards , HEK293 Cells , Humans , Practice Guidelines as Topic , Viral Genome Packaging , Virus Replication
5.
Int J Mol Sci ; 21(10)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455640

ABSTRACT

The adaptation of adenoviruses as gene delivery tools has resulted in the development of high-capacity adenoviral vectors (HC-AdVs), also known, helper-dependent or "gutless". Compared with earlier generations (E1/E3-deleted vectors), HC-AdVs retain relevant features such as genetic stability, remarkable efficacy of in vivo transduction, and production at high titers. More importantly, the lack of viral coding sequences in the genomes of HC-AdVs extends the cloning capacity up to 37 Kb, and allows long-term episomal persistence of transgenes in non-dividing cells. These properties open a wide repertoire of therapeutic opportunities in the fields of gene supplementation and gene correction, which have been explored at the preclinical level over the past two decades. During this time, production methods have been optimized to obtain the yield, purity, and reliability required for clinical implementation. Better understanding of inflammatory responses and the implementation of methods to control them have increased the safety of these vectors. We will review the most significant achievements that are turning an interesting research tool into a sound vector platform, which could contribute to overcome current limitations in the gene therapy field.


Subject(s)
Adenoviridae/genetics , Drug Therapy/methods , Genetic Vectors/genetics , Adenoviridae/immunology , Animals , Genetic Vectors/adverse effects , Genetic Vectors/standards , Genomic Instability , Humans
6.
Methods Mol Biol ; 2086: 27-60, 2020.
Article in English | MEDLINE | ID: mdl-31707666

ABSTRACT

In clinical gene transfer applications, lentiviral vectors (LV) have rapidly become the primary means to achieve permanent and stable expression of a gene of interest or alteration of gene expression in target cells. This status can be attributed primarily to the ability of the LV to (1) transduce dividing as well as quiescent cells, (2) restrict or expand tropism through envelope pseudo-typing, and (3) regulate gene expression within different cell lineages through internal promoter selection. Recent progress in viral vector design such as the elimination of unnecessary viral elements, split packaging, and self-inactivating vectors has established a significant safety profile for these vectors. The level of GMP compliance required for the manufacture of LV is dependent upon their intended use, stage of drug product development, and country where the vector will be used as the different regulatory authorities who oversee the clinical usage of such products may have different requirements. As such, successful GMP manufacture of LV requires a combination of diverse factors including: regulatory expertise, compliant facilities, validated and calibrated equipments, starting materials of the highest quality, trained production personnel, scientifically robust production processes, and a quality by design approach. More importantly, oversight throughout manufacturing by an independent Quality Assurance Unit who has the authority to reject or approve the materials is required. We describe here the GMP manufacture of LV at our facility using a four plasmid system where 293T cells from an approved Master Cell Bank (MCB) are transiently transfected using polyethylenimine (PEI). Following transfection, the media is changed and Benzonase added to digest residual plasmid DNA. Two harvests of crude supernatant are collected and then clarified by filtration. The clarified supernatant is purified and concentrated by anion exchange chromatography and tangential flow filtration. The final product is then diafiltered directly into the sponsor defined final formulation buffer and aseptically filled.


Subject(s)
Academic Medical Centers , Genetic Therapy , Genetic Vectors/biosynthesis , Genetic Vectors/standards , Lentivirus , Cell Culture Techniques , Culture Media , Facility Design and Construction , Genetic Therapy/standards , Genetic Vectors/genetics , HEK293 Cells , Humans , Lentivirus/genetics , Transfection
7.
Gene Ther ; 26(5): 211-215, 2019 05.
Article in English | MEDLINE | ID: mdl-30926961

ABSTRACT

Adeno-associated virus (AAV) vectors are extensively used for gene therapy clinical trials. Accurate and standardized titration methods are essential for characterizing and dosing AAV-based drugs and thus to assess their safety and efficacy. To this end, the Reference Standard Materials (RSM) working group generated standards for AAV serotype 2 and serotype 8. The AAV8RSM (ATCC® VR-1816™) was deposited to the American Type Culture Collection in 2014 and is available to the scientific community. Here, three independent laboratories of the RSM working group provide stability data of the AAV8RSM 2 years after the initial characterization and after container relabeling performed at the ATCC. The AAV8RSM showed constant titers across experimental conditions: 1.48 ± 0.62 × 1012 vector genome (vg)/ml, 9.38 ± 11.4 × 108 infectious units (IU)/ml and 5.76 ± 2.39 × 1011 total particles (p)/ml as determined by qPCR, TCID50 and ELISA, respectively. Additionally, the AAV8RSM capsid protein integrity assessed by SDS-PAGE was equivalent to the original analyses. In conclusion, the AAV8RSM titers remained stable for two years under appropriate storage conditions ( <-70° C). The use of RSM is strongly recommended and endorsed by regulatory agencies to normalize laboratory internal controls and to provide accurate titration of AAV vectors lots.


Subject(s)
Dependovirus/chemistry , Genetic Vectors/standards , Practice Guidelines as Topic , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Cryopreservation/standards , Dependovirus/genetics , Dependovirus/physiology , Genetic Vectors/chemistry , HEK293 Cells , Humans , Protein Stability , Reference Standards , Virus Replication
8.
Pharmeur Bio Sci Notes ; 2017: 88-112, 2017.
Article in English | MEDLINE | ID: mdl-29191266

ABSTRACT

The European Pharmacopoeia (Ph. Eur.) general chapter 5.14. Gene transfer medicinal products for human use suggests the use of absorbance measurements at 260 nm to determine the DNA concentration of plasmid vectors used for the preparation of gene therapy products for human use. An international collaborative study was organised by the European Directorate for the Quality of Medicines & HealthCare (EDQM) to confirm the suitability of UV spectrophotometry for the quantification of plasmid vectors used in gene therapy (GT). Three Official Medicine Control Laboratories (OMCLs of the European OMCL Network) and members of the OMCL Working Group for GT products took part in the study, in which various types of spectrophotometers were assessed using common test samples. Results of the study demonstrated that UV spectrophotometry can be considered suitable for the quantification of plasmid DNA in GT products regardless of the instrument used.


Subject(s)
Genetic Therapy/methods , Genetic Vectors/analysis , Plasmids/analysis , Spectrophotometry, Ultraviolet , Calibration , Europe , Genetic Therapy/standards , Genetic Vectors/genetics , Genetic Vectors/standards , Humans , Linear Models , Observer Variation , Plasmids/genetics , Plasmids/standards , Quality Control , Reference Standards , Reproducibility of Results , Spectrophotometry, Ultraviolet/standards
9.
Hum Gene Ther ; 28(10): 856-861, 2017 10.
Article in English | MEDLINE | ID: mdl-28826233

ABSTRACT

Plasmid DNA is currently gaining increasing importance for clinical research applications in gene therapy and genetic vaccination. For direct gene transfer into humans, good manufacturing practice (GMP)-grade plasmid DNA is mandatory. The same holds true if the drug substance contains a genetically modified cell, for example chimeric antigen receptor (CAR) T cells, where these cells as well as the contained plasmids are used. According to the responsible regulatory agencies, they have to be produced under full GMP. On the other hand, for GMP production of, for example, mRNA or viral vectors (lentiviral vectors, adeno-associated virus vectors, etc.), in many cases, High Quality Grade plasmid DNA is accepted as a starting material. The manufacturing process passes through different production steps. To ensure the right conditions are used for the plasmid, a pilot run must be conducted at the beginning. In this step, a followed upscaling with respect to reproducibility and influences on product quality is performed. Subsequently, a cell bank of the transformed productions strain is established and characterized. This cell bank is used for the cultivation process. After cell harvesting and lysis, several chromatography steps are conducted to receive a pure plasmid product. Depending on the respective required quality grade, the plasmid product is subject to several quality controls. The last step consists of formulation and filling of the product.


Subject(s)
Genetic Vectors , Plasmids , Animals , Gene Transfer Techniques , Genetic Engineering , Genetic Therapy/methods , Genetic Vectors/genetics , Genetic Vectors/isolation & purification , Genetic Vectors/standards , Humans , Plasmids/genetics
10.
Hum Gene Ther Methods ; 28(4): 205-214, 2017 08.
Article in English | MEDLINE | ID: mdl-28747142

ABSTRACT

Gene therapy is a rapidly evolving field. So far, there have been >2,400 gene therapy products in clinical trials and four products on the market. A prerequisite for producing gene therapy products is ensuring their quality and safety. This requires appropriately controlled and standardized production and testing procedures that result in consistent safety and efficacy. Assuring the quality and safety of lentivirus-based gene therapy products in particular presents a great challenge because they are cell-based multigene products that include viral and therapeutic proteins as well as modified cells. In addition to the continuous refinement of a product, changes in production sites and manufacturing processes have become more and more common, posing challenges to developers regarding reproducibility and comparability of results. This paper discusses the concept of developing a first World Health Organization International Standard, suitable for the standardization of assays and enabling comparison of cross-trial and cross-manufacturing results for this important vector platform. The standard will be expected to optimize the development of gene therapy medicinal products, which is especially important, given the usually orphan nature of the diseases to be treated, naturally hampering reproducibility and comparability of results.


Subject(s)
Genetic Therapy/standards , Genetic Vectors/standards , Lentivirus/genetics , World Health Organization , Cell Line, Tumor , Genetic Therapy/methods , Genetic Vectors/genetics , HEK293 Cells , Humans
11.
Malar J ; 16(1): 263, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28673287

ABSTRACT

BACKGROUND: A DNA-human Ad5 (HuAd5) prime-boost malaria vaccine has been shown to protect volunteers against a controlled human malaria infection. The potency of this vaccine, however, appeared to be affected by the presence of pre-existing immunity against the HuAd5 vector. Since HuAd5 seroprevalence is very high in malaria-endemic areas of the world, HuAd5 may not be the most appropriate malaria vaccine vector. This report describes the evaluation of the seroprevalence, immunogenicity and efficacy of three newly identified gorilla adenoviruses, GC44, GC45 and GC46, as potential malaria vaccine vectors. RESULTS: The seroprevalence of GC44, GC45 and GC46 is very low, and the three vectors are not efficiently neutralized by human sera from Kenya and Ghana, two countries where malaria is endemic. In mice, a single administration of GC44, GC45 and GC46 vectors expressing a murine malaria gene, Plasmodium yoelii circumsporozoite protein (PyCSP), induced robust PyCSP-specific T cell and antibody responses that were at least as high as a comparable HuAd5-PyCSP vector. Efficacy studies in a murine malaria model indicated that a prime-boost regimen with DNA-PyCSP and GC-PyCSP vectors can protect mice against a malaria challenge. Moreover, these studies indicated that a DNA-GC46-PyCSP vaccine regimen was significantly more efficacious than a DNA-HuAd5-PyCSP regimen. CONCLUSION: These data suggest that these gorilla-based adenovectors have key performance characteristics for an effective malaria vaccine. The superior performance of GC46 over HuAd5 highlights its potential for clinical development.


Subject(s)
Adenoviruses, Simian , Genetic Vectors/standards , Malaria Vaccines/immunology , Malaria/prevention & control , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/virology , Adenoviruses, Simian/genetics , Adenoviruses, Simian/immunology , Animals , Antibodies, Viral/blood , Disease Models, Animal , Female , Genetic Vectors/genetics , Genetic Vectors/immunology , Ghana/epidemiology , Gorilla gorilla , Humans , Interferon-gamma/blood , Kenya/epidemiology , Malaria/epidemiology , Malaria Vaccines/standards , Mice , Mice, Inbred BALB C , Plasmids , Plasmodium yoelii/immunology , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Seroepidemiologic Studies , Spleen/cytology , Spleen/immunology , T-Lymphocytes/immunology , Transgenes/immunology , United States/epidemiology
12.
Mol Ther ; 25(6): 1375-1386, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28427840

ABSTRACT

Adeno-associated virus (AAV) vectors are promising clinical candidates for therapeutic gene transfer, and a number of AAV-based drugs may emerge on the market over the coming years. To insure the consistency in efficacy and safety of any drug vial that reaches the patient, regulatory agencies require extensive characterization of the final product. Identity is a key characteristic of a therapeutic product, as it ensures its proper labeling and batch-to-batch consistency. Currently, there is no facile, fast, and robust characterization assay enabling to probe the identity of AAV products at the protein level. Here, we investigated whether the thermostability of AAV particles could inform us on the composition of vector preparations. AAV-ID, an assay based on differential scanning fluorimetry (DSF), was evaluated in two AAV research laboratories for specificity, sensitivity, and reproducibility, for six different serotypes (AAV1, 2, 5, 6.2, 8, and 9), using 67 randomly selected AAV preparations. In addition to enabling discrimination of AAV serotypes based on their melting temperatures, the obtained fluorescent fingerprints also provided information on sample homogeneity, particle concentration, and buffer composition. Our data support the use of AAV-ID as a reproducible, fast, and low-cost method to ensure batch-to-batch consistency in manufacturing facilities and academic laboratories.


Subject(s)
Dependovirus , Genetic Vectors/standards , Capsid/chemistry , Capsid Proteins/chemistry , Capsid Proteins/genetics , Dependovirus/isolation & purification , Dependovirus/physiology , Genetic Vectors/isolation & purification , Humans , Mutation , Protein Stability , Reproducibility of Results , Spectrometry, Fluorescence , Structure-Activity Relationship , Thermodynamics
13.
Hum Gene Ther Methods ; 28(3): 101-108, 2017 06.
Article in English | MEDLINE | ID: mdl-28322595

ABSTRACT

Adeno-associated viral (AAV) vectors have emerged as one of the most popular gene transfer systems in both research and clinical gene therapy. As AAV vectors are derived from a stealth, nonpathogenic virus and lack active integrase activity, these vectors are frequently applied for in vivo gene therapy of liver, muscle, and other postmitotic tissues. Although long-term transgene expression from AAV vector episomes is reported from these tissues, the episomal nature of AAV-once regarded as disadvantage-has become an attractive feature for gene-editing approaches targeting proliferating cells. In response to the high demand, AAV vector production is receiving special attention. Besides particle yields and biological activity, the most important concern is improving vector purity. The most difficult task in this regard is removal of defective particles, that is, capsids that are either empty or contain DNA other than the full-length vector genomes. Herein, we characterize and discuss these so-called product-related impurities, methods for their detection, as well as strategies to avoid or reduce their formation.


Subject(s)
Dependovirus/genetics , Genetic Vectors/standards , Animals , DNA Contamination , Genetic Therapy/methods , Humans
14.
Mol Pharm ; 13(12): 4094-4105, 2016 12 05.
Article in English | MEDLINE | ID: mdl-27656777

ABSTRACT

Active targeting and delivery to pathophysiological organs of interest is of paramount importance to increase specific accumulation of therapeutic drugs or imaging agents while avoiding systemic side effects. We recently developed a family of new peptide ligands of the human and rodent LDL receptor (LDLR), an attractive cell-surface receptor with high uptake activity and local enrichment in several normal or pathological tissues (Malcor et al., J. Med. Chem. 2012, 55 (5), 2227). Initial chemical optimization of the 15-mer, all natural amino acid compound 1/VH411 (DSGL[CMPRLRGC]cDPR) and structure-activity relationship (SAR) investigation led to the cyclic 8 amino acid analogue compound 22/VH445 ([cMPRLRGC]c) which specifically binds hLDLR with a KD of 76 nM and has an in vitro blood half-life of ∼3 h. Further introduction of non-natural amino acids led to the identification of compound 60/VH4106 ([(d)-"Pen"M"Thz"RLRGC]c), which showed the highest KD value of 9 nM. However, this latter analogue displayed the lowest in vitro blood half-life (∼1.9 h). In the present study, we designed a new set of peptide analogues, namely, VH4127 to VH4131, with further improved biological properties. Detailed analysis of the hLDLR-binding kinetics of previous and new analogues showed that the latter all displayed very high on-rates, in the 106 s-1.M-1 range, and off-rates varying from the low 10-2 s-1 to the 10-1 s-1 range. Furthermore, all these new analogues showed increased blood half-lives in vitro, reaching ∼7 and 10 h for VH4129 and VH4131, respectively. Interestingly, we demonstrate in cell-based assays using both VH445 and the most balanced optimized analogue VH4127 ([cM"Thz"RLRG"Pen"]c), showing a KD of 18 nM and a blood half-life of ∼4.3 h, that its higher on-rate correlated with a significant increase in both the extent of cell-surface binding to hLDLR and the endocytosis potential. Finally, intravenous injection of tritium-radiolabeled 3H-VH4127 in wild-type or ldlr -/- mice confirmed their active LDLR targeting in vivo. Overall, this study extends our previous work toward a diversified portfolio of LDLR-targeted peptide vectors with validated LDLR-targeting potential in vivo.


Subject(s)
Genetic Vectors/standards , Peptide Fragments/pharmacology , Receptors, LDL/antagonists & inhibitors , Animals , CHO Cells , Cricetulus , Drug Delivery Systems , Endocytosis , Mice , Mice, Inbred C57BL , Mice, Knockout , Peptide Fragments/pharmacokinetics , Receptors, LDL/physiology , Structure-Activity Relationship , Tissue Distribution
15.
Hum Gene Ther ; 27(5): 363-75, 2016 May.
Article in English | MEDLINE | ID: mdl-26975339

ABSTRACT

Mucopolysaccharidosis type IIIA (MPS IIIA) is predominantly a disorder of the central nervous system, caused by a deficiency of sulfamidase (SGSH) with subsequent storage of heparan sulfate-derived oligosaccharides. No widely available therapy exists, and for this reason, a mouse model has been utilized to carry out a preclinical assessment of the benefit of intraparenchymal administration of a gene vector (AAVrh10-SGSH-IRES-SUMF1) into presymptomatic MPS IIIA mice. The outcome has been assessed with time, measuring primary and secondary storage material, neuroinflammation, and intracellular inclusions, all of which appear as the disease progresses. The vector resulted in predominantly ipsilateral distribution of SGSH, with substantially less detected in the contralateral hemisphere. Vector-derived SGSH enzyme improved heparan sulfate catabolism, reduced microglial activation, and, after a time delay, ameliorated GM3 ganglioside accumulation and halted ubiquitin-positive lesion formation in regions local to, or connected by projections to, the injection site. Improvements were not observed in regions of the brain distant from, or lacking connections with, the injection site. Intraparenchymal gene vector administration therefore has therapeutic potential provided that multiple brain regions are targeted with vector, in order to achieve widespread enzyme distribution and correction of disease pathology.


Subject(s)
Dependovirus/genetics , Genetic Therapy , Genetic Vectors/genetics , Hydrolases/genetics , Mucopolysaccharidosis III/genetics , Animals , Antibodies, Neutralizing/immunology , Autophagy , Biomarkers , Brain/metabolism , DNA-Binding Proteins , Dependovirus/classification , Disease Models, Animal , Endosomes/metabolism , Enzyme Activation , Female , G(M3) Ganglioside/metabolism , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Genetic Vectors/adverse effects , Genetic Vectors/standards , Glial Fibrillary Acidic Protein/metabolism , Heparitin Sulfate/metabolism , High Mobility Group Proteins , Humans , Hydrolases/immunology , Hydrolases/metabolism , Lysosomes/metabolism , Male , Mice , Mucopolysaccharidosis III/metabolism , Mucopolysaccharidosis III/therapy , Saccharomyces cerevisiae Proteins , Transduction, Genetic
16.
Cancer Gene Ther ; 22(12): 554-63, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26584531

ABSTRACT

The rapidly changing field of gene therapy promises a number of innovative treatments for cancer patients. Advances in genetic modification of cancer and immune cells and the use of oncolytic viruses and bacteria have led to numerous clinical trials for cancer therapy, with several progressing to late-stage product development. At the time of this writing, no gene therapy product has been approved by the United States Food and Drug Administration (FDA). Some of the key scientific and regulatory issues include understanding of gene transfer vector biology, safety of vectors in vitro and in animal models, optimum gene transfer, long-term persistence or integration in the host, shedding of a virus and ability to maintain transgene expression in vivo for a desired period of time. Because of the biological complexity of these products, the FDA encourages a flexible, data-driven approach for preclinical safety testing programs. The clinical trial design should be based on the unique features of gene therapy products, and should ensure the safety of enrolled subjects. This article focuses on regulatory considerations for gene therapy product development and also discusses guidance documents that have been published by the FDA.


Subject(s)
Genetic Therapy/legislation & jurisprudence , Genetic Vectors/standards , Neoplasms/therapy , United States Food and Drug Administration , Drug Approval/legislation & jurisprudence , Genetic Therapy/standards , Humans , Neoplasms/genetics , Patient Safety , United States
17.
J Immunother ; 38(3): 127-35, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25751502

ABSTRACT

The successful genetic engineering of patient T cells with γ-retroviral vectors expressing chimeric antigen receptors or T-cell receptors for phase II clinical trials and beyond requires the large-scale manufacture of high-titer vector stocks. The production of retroviral vectors from stable packaging cell lines using roller bottles or 10- to 40-layer cell factories is limited by a narrow harvest window, labor intensity, open-system operations, and the requirement for significant incubator space. To circumvent these shortcomings, we optimized the production of vector stocks in a disposable fixed-bed bioreactor using good manufacturing practice-grade packaging cell lines. High-titer vector stocks were harvested over 10 days, representing a much broader harvest window than the 3-day harvest afforded by cell factories. For PG13 and 293Vec packaging cells, the average vector titer and the vector stocks' yield in the bioreactor were higher by 3.2- to 7.3-fold, and 5.6- to 13.1-fold, respectively, than those obtained in cell factories. The vector production was 10.4 and 18.6 times more efficient than in cell factories for PG13 and 293Vec cells, respectively. Furthermore, the vectors produced from the fixed-bed bioreactors passed the release test assays for clinical applications. Therefore, a single vector lot derived from 293Vec is suitable to transduce up to 500 patients cell doses in the context of large clinical trials using chimeric antigen receptors or T-cell receptors. These findings demonstrate for the first time that a robust fixed-bed bioreactor process can be used to produce γ-retroviral vector stocks scalable up to the commercialization phase.


Subject(s)
Batch Cell Culture Techniques/methods , Batch Cell Culture Techniques/standards , Bioreactors , Genetic Vectors/genetics , Genetic Vectors/standards , Retroviridae/genetics , Animals , Cell Line, Transformed , HEK293 Cells , Humans , Leukemia Virus, Gibbon Ape/genetics , T-Lymphocytes/metabolism , Transduction, Genetic
18.
Hum Gene Ther Methods ; 26(1): 25-34, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25640117

ABSTRACT

High-capacity adenoviral vectors (HCAdVs) are promising tools for gene therapy as well as for genetic engineering. However, one limitation of the HCAdV vector system is the complex, time-consuming, and labor-intensive production process and the following quality control procedure. Since HCAdVs are deleted for all viral coding sequences, a helper virus (HV) is needed in the production process to provide the sequences for all viral proteins in trans. For the purification procedure of HCAdV, cesium chloride density gradient centrifugation is usually performed followed by buffer exchange using dialysis or comparable methods. However, performing these steps is technically difficult, potentially error-prone, and not scalable. Here, we establish a new protocol for small-scale production of HCAdV based on commercially available adenovirus purification systems and a standard method for the quality control of final HCAdV preparations. For titration of final vector preparations, we established a droplet digital polymerase chain reaction (ddPCR) that uses a standard free-end-point PCR in small droplets of defined volume. By using different probes, this method is capable of detecting and quantifying HCAdV and HV in one reaction independent of reference material, rendering this method attractive for accurately comparing viral titers between different laboratories. In summary, we demonstrate that it is possible to produce HCAdV in a small scale of sufficient quality and quantity to perform experiments in cell culture, and we established a reliable protocol for vector titration based on ddPCR. Our method significantly reduces time and required equipment to perform HCAdV production. In the future the ddPCR technology could be advantageous for titration of other viral vectors commonly used in gene therapy.


Subject(s)
Adenoviridae/genetics , Genetic Vectors/standards , Polymerase Chain Reaction/methods , Adenoviridae/chemistry , Base Sequence , Cell Line, Tumor , Genetic Vectors/chemistry , Genetic Vectors/genetics , HEK293 Cells , Humans , Molecular Sequence Data , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL
...